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ABSTRACT

A desire with iterative optimization techniques is that the dgorithm reaches the globa optimum rather
than get stranded at a locd optimum vaue. In this paper, we examine the theoretical and numerical
globa convergence properties of a certain “gradient freg’ stochadtic gpproximetion agorithm called
“SPSA,” that has performed well in complex optimization problems. We establish two theorems on the
globa convergence of SPSA. The firg provides conditions under which SPSA will converge in
probability to a globd optimum using the well-known method of injected noise. The injected noise
prevents the agorithm from converging prematurely to a loca optimum point. In the second theorem,
we show that, under different conditions, “basc” SPSA without injected noise can achieve
convergence in probability to a globa optimum. This occurs because of the noise effectively (and
automaticaly) introduced into the agorithm by the specid form of the SPSA gradient gpproximation.
This globa convergence without injected noise can have important benefits in the setup (tuning) and
performance (rate of convergence) of the agorithm. The discussion is supported by numerica studies
showing favorable comparisons of SPSA to smulated annealing and genetic dgorithms.

KEYWORDS: Sochastic Optimization, Global Convergence, Stochastic Approximation,
Smultaneous Perturbation Sochastic Approximation (SPSA), Recursive Annealing

1. INTRODUCTION

A problem of great practicad importance is the problem of stochagtic optimization, which may be stated
as the problem of finding a minimum point, ¢* 1 RP, of a red-vaued function L), cdled the “loss
function,” that is observed in the presence of noise. Many gpproaches have been devised for numerous
goplications over the long higtory of this problem. A common desire in many gpplications is thet the
agorithm reaches the globa minimum rather than get sranded a aloca minimum vaue. In this paper,
we condder the popular stochastic optimization technique of stochastic gpproximation (SA), in
particular, the form that may be called “gradient-free” SA. This refers to the case where the gradient,
9@) =TL@)/1q , Of the loss function is not readily avaladle or not directly measured (even with noise).
This is a common occurrence, for example, in complex systems where the exact functiona relaionship
between the loss function value and the parameters, q , is not known and the loss function is evauated
by measurements on the system (or by other means, such as smulation). In such cases, one uses
ingtead an gpproximation to g(q) (the well-known form of SA cdled the Kiefer-Wolfowitz type is an
example).



The usud form of thistype of SA recursonis
Ok +1 =0k - 8k @K) , «y
where g, (@) isan approximation (at the k™ step of the recursion) of the gradient g(q) , and {a} isa
sequence of positive scaars that decreases to zero (in the stlandard implementation) and satisfies other
properties. Thisform of SA has been extensively studied, and is known to converge to alocd minimum
of the loss function under various conditions.

Severd authors (e.g., Chin (1994), Gelfand and Mitter (1991), Kushner (1987), and Styblinski
and Tang (1990)) have examined the problem of global optimization usng various forms of gradient-
free SA. Theusud verson of thisagorithm is based on using the sandard “finite difference’ gradient
goproximation for g, (q). Itisknown that carefully injecting noise into the recurson based on this

sandard gradient can result in an agorithm that converges (in some sense) to the globa minimum. For a
discussion of the conditions, results, and proofs, see, e.g., Fang et d. (1997), Gelfand and Mitter
(1991), and Kushner (1987). The amplitude of the injected noise is decreased over time (a process
cdled “anneding’), so that the dgorithm can findly converge when it reaches the neighborhood of the
globd minimum point.

A somewhat different verson of SA is obtained by using a* smultaneous perturbation” gradient
approximation, as described in Spall (1992) for multivariable (p>1) problems. The gradient
gpproximation in Smultaneous-perturbation SA (SPSA) is much faster to compute than the finite-
difference approximation in multivariable problems. More sgnificantly, usng SPSA often resultsin a
recursion that is much more economical, in terms of loss-function evauations, than the standard verson
of SA. Thelossfunction evauations can be the most expensive part of an optimization, especidly if
computing the loss function requires making measurements on the physicd sysem. Severd studies
(e.g., Spdl (1992), Chin (1997)) have shown SPSA to be very effective in complex optimization
problems. A considerable body of theory has been developed for SPSA (Spall (1992), Chin (1997),
Dippon and Renz (1997), Spall (2000), and the references therein), but, because of the specia form of
its gradient gpproximation, existing theory on globd convergence of standard SA dgorithmsis not
directly applicable to SPSA. In Section 2 of this paper, we present a theorem showing that SPSA can
achieve globa convergence (in probability) by the technique of injecting noise. The* convergencein
probability” results of our Theorem 1 (Section 2) and Theorem 2 (Section 3) are standard types of
globa convergence results. Severa authors have shown or discussed globa convergence in probability
or indidribution (Chiang et al. (1987), Gelfand and Mitter (1991), Gelfand and Mitter (1993), Geman
and Geman (1984), Fang et al. (1997), Hajek (1988), Kushner (1987), Y akowitz et al. (2000), and
Yin (1999)). Stronger “amost sure’ globa convergence results seem only to be available by using
generally infeasible exhaustive search (Dippon and Fabian (1994)) or random search methods
(Yakowitz (1993)), or for cases of optimization in adiscrete (q -) space (Alrefag and Andradottir
(1999)).

The method of injection of noise into the recursions has proven useful, but naturdly resultsin a
relative dowing of the rate of convergence of the dgorithm (e.g., Yin (1999)) due to the continued
injection of noise when the recursion is near agloba solution. In addition, the implementation of the
extra noise terms adds to the complexity of setting up the dgorithm. In Section 3, we present a theorem
showing that, under different (more demanding) conditions, the basic version of SPSA can perform asa



globd optimizer without the need for injected noise. Section 4 contains numerical studies
demongtrating SPSA’ s performance compared to two other popular strategies for globa optimization,
namedy, smulated annedling and genetic dgorithms; and Section 5 isa summary. The Appendix
provides some technica details.

2. SPSA WITH INJECTED NOISE ASA GLOBAL OPTIMIZER

Our firgt theorem gpplies to the following agorithm, which is the basic SPSA recursion indicated in
equation (1), modified by the addition of extranoise terms.

Ok+1 =0k - a Gk (@K + Wk , 2
where wy T RP isii.d. N(01) injected noise, ay =a/k , of =q/kloglogk, a>0, >0, and () isthe
“dmultaneous perturbation” gradient defined as follows: 3

6@)° (26D) L@ + 6 D) - L@ - oDy +ef) - e )1,
where ¢, eiﬁi) arescaars, b1 RP, and the inverse of a vector is defined to be the vector of inverses.
This gradient definition follows that given in Spdl (1992). The e, terms represent (unknown) additive
noise that may contaminate the loss function observation, ¢, and by are parameters of the agorithm,
the ¢, sequence decreases to zero, and the by, components are chosen randomly according to the
conditionsin Spal (1992), usudly (but not necessarily) from the Bernoulli (£1) digtribution. (Uniformly
or normally distributed perturbations are not alowed by the regularity conditions.)

In this Section, we will refer to Gelfand and Mitter (1991) as GM91. Our theorem on global
convergence of SPSA using injected noiseis based on aresult in GM91. In order to state the theorem,
we need to develop some notation, starting with the definition of a key probability measure,p" , used in
hypothesis H8 below. Definefor any h>0: dp" (@)/dg =exp(- 2L(q)/h%) /2", where
zh = Qp &P(-2L@) /h 2)dq . Next, define an important constant, ¢, for convergence theory as follows

(GM91). For ti R and uy,uri RP, let

|(tug.ug) = inf %Qt) |df (5)/ds+g(f (9)[ ds,

where theinf istaken over dl absolutely continuous functions f : R® RP such that f (0)=u; and f (t) =u>,
and |- | isthe Euclidean norm. Let v(uy,uz) = I(L)rr; I(t,ug,un),and S ={qlg@)=0. Then
t

Co°3 sp  (V(upup)- 2L(up)) -
uiu2l So

We will dso need the following definition of tightness. If k isacompact subset of rRP and{ X, } isa
sequence of random p-dimensiond vectors, then { x,  } istightin k if Xo1 K andfor any e>o0, there

exists a compact subset K, i RP suchthat P(X, T Ke)>1-e," k>0. Findly, let zg © § @) - g@ax) and let
superscript prime (¢ denote transpose.

The following are the hypotheses used in Theorem 1.
H1.. Let b1 RP beavector of p mutudly independent mean-zero random varigbles
{Dk1, Dk2.. Dyp}¢ SUch that {Dy} isamutudly independent sequence that is aso independent of



distributed about zero, |Dy; |£a; <¥ as. and E|D, [Eap <¥ ,AS. " ik.
H2.. Let (") and e{ ) represent random measurement noiseterms that satisfy Ey(e{" - e{))=0
as. " k, where g, denotesthe conditiona expectation given A, © the sgma agebrainduced by

Edel?)?£az<¥ as. "k.

H3. L) isathrice continuoudy differentigble map from RP into RY; L(g) atainsthe minimum vadue
of zero;as g ¥ ,wehave Lg)® ¥ and |g@)® ¥ ; inf( 9(a) P - Lap(L(q))) >-¥ (Lap hereis
the Laplacian, i.e., the sum of the second derivativesof L(g) with repect to each of its
components); L® @)° 13L@)/ T ¢ ¢q ¢ exists continuoudy with individua dements satisfying

|Li(ii)2i3(q)|£a5<¥ .

H4. The dgorithm parameters have theform ay =a/k, o, =c/k9, for k=12,..., where a,c>0,
a/a>Cy, and g1 [1/6,1/2) .

H5. [(4p- 4) /(4p- 3?2 <|ihn|winf(g(q )& /(g@) lla D) -
® ¥

HB. Ey (L(ak £ ckDy))2£as<¥ as. "k.

H7.Let w, beani.i.d. N(0,1) sequence, independent of the sequences {qy,...dk-1}, fel™...e{},
and {Dy,...,.Dy.1} -

H8.For any h >0,z" <¥; p" hasauniquewesk limit p ash® 0.

H9. There exists acompact subset k of RP suchthat {qy} istightin k.

Comments:

(@ Assumptions H3, H5, and H8 correspond to assumptions (A1) through (A3) of GM91,
assumptions H4 and H9 supply the hypotheses stated in GM91' s Theorem 2; and the definitions of
a, and q¢ givenin equation (2) correspond to those used in GM91.  Since we will show that
assumption (A4) of GM9L is stisfied by our dgorithm, this dlows us to use the concluson of their
Theorem 2.

(b) Thedomainof g givenin H4 isone commonly assumed for convergence results (eg., Spal
(1992)).

We can now gtate our first theorem asfollows:
Theorem 1. Under hypotheses H1 through H9, q, convergesin probability to the set of globd minima
of L@)-
Proof: See Maryak and Chin (1999), and the remark on convergence in probability in GM91, p.
1003.

3. SPSA WITHOUT INJECTED NOISE ASA GLOBAL OPTIMIZER

Asindicated in the introduction above, the injection of noise into an agorithm, while providing for globa
optimization, introduces some difficulties such as the need for more “tuning” of the extra terms and



retarded convergence in the vicinity of the solution, due to the continued addition of noise. This effect on
the rate of convergence of an dgorithm using injected noise is technically subtle, but may have an
important influence on the agorithm’s performance. In particular, Yin (1999) shows that an agorithm of
the form (2) converges a arate proportional to floglog (k+const) , while the nominal local convergence

rate for an dgorithm without injected noiseis kY3, i.e.,, kY3, - q*) convergesin distribution (Spdll
(1992)). Theseratesindicate asgnificant difference in performance between the two dgorithms.

A certain characterigtic of the SPSA gradient gpproximation led us to question whether SPSA
needed to use injected noise for globa convergence. Although this gradient approximation tends to
work very well in an SA recursion, the SPSA gradient, evaluated a any single point in q -space, tends
to be less accurate than the standard finite-difference gradient gpproximation evaluated at q . So, oneis
led to consider whether the effective noise introduced (autométicaly) into the recursion by this
inaccuracy is sufficient to provide for globa convergence without afurther injection of additive noise. It
turns out that basic SPSA (i.e., without injected noise) does indeed achieve the same type of globd
convergence as in Theorem 1, but under a different, and more difficult to check, set of conditions.

In this Section, we designate Kushner (1987) as K87, and Kushner and Yin (1997) asKY 97.
Here we are working with the basic SPSA dgorithm having the same form as equation (1):

Ok+1 =0k - aGk (@K) » (4)
where g, (-) isthe smultaneous-perturbation gpproximate gradient defined in Section 2, and now
(obvioudy) no extranoise is injected into the agorithm. For use in the subsequent discussion, it will be
convenient to define

bi (A1) © E (8K (ak) - 9(ak) 1AK) » and ex @k )° Gk@k)- E(Gk @K) IAk) ,

Gk+1 =0k - a9k ) + & (k) +bi(@K)] - ®)
Ancther key dement in the subsequent discussion isthe ordinary differential equation (ODE):
d=9@), (6)

which, in Lemma 1 of the Appendix is shown to be the “limit mean” ODE for dgorithm (4).

Now we can gate our assumptions for Theorem 2, asfollows:
J1 .Let b1 RP beavector of p mutualy independent mean-zero random variables

IDy [Eay <¥ as andE|D,? |£ap <¥ .

J2 Let (" and e represent random measurement noise terms that satisfy ((e{™ - e())|A,) =0
as. "k. The ¢} sequences need not be assumed independent. Assume that
E(e™)? A Eag<¥ as "k.

J.3 (a). L(@) isthrice continuoudy differentiable and the individua dements of the third derivative
sy (L . @)eag<¥.

]
(0). L@@ ¥ asj|® ¥.



J.4 The dgorithm parameters satisfy the following: the gains a, >0, a, ® 0 as k® ¥ , and
5i:1ak =¥ . Thesequence {¢,} isof form ¢, =c/k9, where ¢>0 and g1 [1/6,1/2), and

éizo(ak /ck)2 <¥.

J.5 Thegradient g(q) isbounded and Lipschitz continuous.

J.6 The ODE (6) has a unique solution for each initia condition.

J.7 For the ODE (6), suppose that there exigts a finite collection of digoint compact stable invariant
sets (see K87) Ky, Ky,...Km, suchthat . K; containsal the limit setsfor (6). These setsare

interpreted as closed sets containing dl loca (including globa) minima of the lass function.

J.8 Forany h>0,z" <¥; p" hasauniquewesk limit p ash® 0 (z" and p" are defined in Section
2).

J9 EI§ 1 a@)I<¥ " k.

J.10 For any asymptotically stable (in the sense of Ligpunov) point, q , of the ODE (6), there exists
aneghborhood of the originin RP such that the closure, Q,, of that neighborhood satisfies
q+Q°{q +y:yi Qx}1 Q,where Qi RP denotesthe dlowable q -region. Thereisa
neighborhood, @, of theoriginin RP and ared-vaued function Hy¢ 1.y ), continuousin
Q" Q,, whose y ; -derivativeis continuouson @, for eechfixed y» 1 Q,, and such that the
following limit holds. For any ¢,b>0,with ¢ benganintegrd multipleof D, and any functions
y1(-),y o(-) tekingvauesin Q" Q, andbeing congant on the intervals [iD,iD+D),iD<c , we have

imtm-1

Q H,§ 1(9)y .(s))ds=1m SUp—log Eexp a Yy (D)4 izim e (qn+,) (7
Also, thereisafunction Hz(y 3) that is continuous and differentiable in asmal neighborhood of
the origin and such that

Q H, Y (S))dS—Ilmsup log E exp a(C/D) 1 o im+m-1 N @

y f(iD)a j=im €n+j (Qn+j)g-

A bit more notation is needed. Let 7 >0 beinterpreted such that [0, 7] isthetotd time period
under consderation in ODE (6). Let
ﬁ@’ 1Y 2) =05[H (% 1y ,) +H, (2 ,)
Ty ) =sply b - 0ty )~ Iy Ly ) ®©)

and, for f (0)=xi R, define the function
S(Tf)= QT L( (s).f (9)ds,
if £(-) isared-vaued asolutdy-continuous function on [o0,T] and to take the value ¥
otherwise. s(7.f) istheusud action functiona of the theory of large deviations (adapted to our
context). Definet,° § " 0a , and tf =§ ' Zan.i . Define () and q"() by
qu =x1 Q, qk+1 —qk - an+kgn+k(qk) , and q" (1) —CIE for ti [tk |tk+1) .
Now we can gate the last two assumptions for Theorem 2:



J11 Foreach d >0 and i=12..,m, thereisa r -neighborhood of «;, denoted N, (k;), and
dr >0,T, <¥ suchthat, for each x,y1 N, (Kj), thereisapath, f (), with f (0 =x, f(T,) =y,
where T, £T, and s(T; f)£d.

J.12 Thereisasphere, p;, suchthat b, contains | J.K; initsinterior, and the trgjectories of " ()
dayin D;. All pahsof ODE (6) Sartingin D; Say in D;.

Note 1. Assumptions J1, J2, and J3(a) are from Spall (1992), and are used here to characterize the
noise terms b, @y) and e, (@) . Assumption J3(b) is used on page 178 of K87. Assumption J4
expresses standard conditions on the agorithm parameters (see Spall (1992)), and implies
hypothesis (A10.2) in KY 97, p. 174. Assumptions J5 and J6 correspond to hypothesis
(A10.1) inKY97, p. 174. Assumption J7 isfrom K87, p. 175. Assumption J8 concerns the
limiting distribution of g, . Assumption J9 is used to establish the “mean” criterion for the

martingale sequence in Lemma 2. Assumptions J11 and J12 are the “controllability” hypothess
A4.1 and the hypothesis A4.2, respectively, of K87, p. 176.

Note 2. Assumption J10 corresponds to hypotheses (A10.5) and (A10.6) in KY 97, pp. 179-181.
Although these hypotheses are sandard forms for this type of large deviation andysis, it is
important to judtify their reasonableness. Thefirg part (equation (7), involving noise terms
b @y) ) of N0 isjustified by the discussion in KY 97, p. 174, which notes that the results of their

subsection 6.10 are valid if the noise terms (that they denote x,, ) are bounded. This discussion
is gpplicable to our dgorithm since the by () Noise terms were shown by Spall (1992) to be
o(c?) (ck ® 0) as. The second part (equation (8), involving noise terms ey () ) isjustified by
the discusson in KY 97, p. 174, which notes thet the results in their subsection 6.10 are vdid if
the noise terms they denote dm,, (corresponding to our noise terms ey () ) satisfy the
martingae difference property that we have established in Lemma 2 of the Appendix.

Now we can sate our main theorem:

Theorem 2. Under assumptions J1 through J12, q, convergesin probability to the set of globa minima
of L@).

The idea of the proof is as follows (see the Appendix for the details). This theorem follows from results

(in adifferent context) in K87 for an agorithm g1 =ax - axlg@y) +zk] , Where z, isi.i.d. Gaussan

(injected) noise. In order to prove our Theorem 2, we start by writing the SPSA recursion as

Qs1 =0k - aklo@k) +zk] , Where zg © g (k) - o@x) isthe “effective noise” introduced by the inaccuracy

of the SPSA gradient approximation. So, our algorithm has the same form asthat in K87. However,

since z, isnot i.i.d. Gaussian, we cannot use K87’ sresult directly. Instead, we use materia in Kushner

and Yin (1997) to establish akey “large deviation” result related to our agorithm (4), which alows the

result in K87 to be used with z, replacing the z, in hisdgorithm.

4. NUMERICAL STUDIES: SPSA WITHOUT INJECTED NOISE



4.1. Two-Dimensional Problem

A study was done to compare the performance of SPSA to a recently published gpplication of the
popular genetic dgorithm (GA). The loss function is the well-known Griewank function (see Haatga
(1999)) defined for atwo-dimensiond q = (tq,t2)¢, by:

L(Q) = cos(t, - 100) cod[(t, - 100) /2] - [(t, - 100)° +(t, - 100)*]/4000- 1,
which has thousands of locd minimain the vicinity of asngle globa minimum at g = (100,00 ¢ a which
L@)=0. Haatga (1999) describes the gpplication of a GA to this function (actudly, to find the
maximumof - L(q)) based on noise-free evauationsof L) (i.e., e, =0). Thisstudy achieved a
success rate of 66% (see Haatgja s Table 1.3, p.16) in 50 independent trias of the GA, using 300
generations and 9000 L(q) evauationsin each run of the GA. Haatgad s definition of a successful
solution is a reported solution where the norm of the solution minus the correct vaue, q” , isless than
0.2, and the vaue of the loss function at the reported solution iswithin 0.01 of the correct vaue of zero.
We examined the performance of basic SPSA (without adding injected noise) on this problem, using
a, =al(A+k)® ,with A=60, a=100 and a =.602, adowly decreasing gain sequence of aform that has
been used in many applications (see Spal (1998)). For the gradient approximation (equation (3)), we
chose each component of D, to be an independent sample from aBernoulli (+1) digtribution, and
e, =c/k9,with ¢ =10 and g =.101. Since we used the exact loss function, the e, noise terms were zero.
Weran SPSA, dlowing 3000 function evauations in each of 50 runs, and arting the algorithm (each
time) at apoint randomly chosen in the domain [- 200, 400] " [-200,400] . Haatgja's q -domain was dso
congtrained to liein abox, but the dimengons of the box were not specified. Hence we chose adomain
that is a cube centered at the globa minimum, in which there are many loca minimaof L) (asseenin
Haatga s (1999) Figure 1.1). SPSA successfully located the globa minimum in al 50 runs (100%
SUCCESS rate).

4.2. Ten-Dimensional Problem

For amore ambitious test of the global performance of SPSA, we applied SPSA to aloss function
given in Example 6 of Styblinski and Tang (1990), which we will designate for convenience as ST9O.
Thelossfunctionis

B
L@)=@2p) 15 t7 - 4pQ cos(t;) ,
i=1 i=1
where p=10 and g = (t;....t)¢. Thisfunction hasthe globad minimum vaueof -40 a theorigin, and a
large number of local minima. Asin the two-dimensiona study above, we used the exact loss function.
Our god isto compare the performance of SPSA without injected noise with smulated anneding and
with aGA.

For the amulated annedling agorithm, we use the results reported in ST90. They used an
advanced form of smulated annedling called fast smulated annedling (FSA). According to ST90, FSA
has proven to be much more efficient than classcd smulated annealing due to using Cauchy (rather than
Gaussian) sampling and using afast (inversdly linear in time) cooling scheme. For more details on FSA,



see ST90. The results of their gpplication of FSA to the above L) aregivenin Table 1 bdow (FSA
values taken from Table 10 of ST90). Table 1 shows the results of 10 independent runs of each
agorithm. In each case (each run of each agorithm), the best value of L(q) found by the dgorithm is
shown. Intheir sudy, dthough FSA was alowed to use 50,000 function eva uations for each of the
runs, the algorithm showed very limited successin locating the globa minimum. It should be noted that
the main purpose of the ST90 paper was to examine areatively new agorithm, stochastic
gpproximation combined with convolution smoothing. This agorithm, which they cdl SAS, was much
more effective than FSA, yidding results between those shown in Table 1 for GA and SPSA.

For the genetic agorithm (GA), we implemented a GA using the popular festures of ditism (dite
members of the old population pass unchanged into the new population), tournament selection
(tournament size = 2), and real-number encoding (see Mitchell (1996), pp. 168, 170, and 157,
respectively). After congderable experimentation, we found the following settings for the GA dgorithm
to provide the best performance on this problem. The population size was 100, the number of dite
members (those carried forward unchanged) in each generation was 10, the crossover rate was 0.8,
and mutation was accomplished by adding a Gaussan random variable with mean zero and standard
deviation 0.01 to each component of the offspring. The origind population of 100 (10-dimensond) q -
vectors was created by uniformly randomly generating pointsin the 10-dimensiond hypercube centered
at the origin, with edges of length 6 (so, dl components had absolute vaue less than or equa to 3
radians). We congtrained al component values in subsequent generations to be less than or equal to 4.5
in absolute vaue. Thisworked a bit better than congtraining them to be less than 3, snce, with the
tighter congtraints, the GA got stuck at the congtraint boundary and could not reach loca minimathat
were just over the boundary. All runs of the GA agorithm reported here used 50,000 evauations of the
lossfunction. The results of the 10 independent runs of GA are shown in Table 1. Although the
agorithm did reasonably well in getting close to the minimum loss vaue of —40, it only found the globd
minimum in one of the 10 runs (run #8). In the other nine cases, afew (typicdly two or four) of the
components were trapped in aloca minimum (around = pi radians), while the rest of the components
(approximately) achieved the correct value of zero. Note that the nature of the loss function is such that
thevadueof L) isvery closeto aninteger (e.g., —39.0 or —38.0) when an even number (e.g., 2 or 4)
of componentsof q are near + pi radians.

We examined the performance of basic SPSA (without adding injected noise), using the
agorithm parameters defined in Subsection 4.1 with A=60, a=1, a =.602, c=2,and g=.101. We
started q at t; =3 radians, i =1,...,p, reulting in aninitia lossfunction vdue of -31. This choice of
darting point was at the outer boundary of the domain in which we chose initid vaues for the GA
agorithm, and we did not congtrain the search space for SPSA aswe did for GA (the initidization and
search space for FSA were not reported in ST90). Weran 10 Monte Carlo trids (i.e., randomly
varying thechoicesof D, ). Theresultsaretabulated in Table 1. The results of these numerica studies

show a strong performance of the basic SPSA dgorithm in difficult globa optimization problems



Table1l. Best Loss Function Valuein Each of 10 I ndependent Runsof Three Algorithms

Run SPSA GA FSA

1 -40.0 -38.0 -24.9

2 -40.0 -39.0 -155

3 -40.0 -39.0 -29.0

4 -40.0 -38.0 -32.1

5 -40.0 -37.0 -30.2

6 -40.0 -39.0 -30.1

7 -40.0 -38.0 -27.9

8 -40.0 -40.0 -20.9

9 -40.0 -38.0 -285

10 -40.0 -39.0 -34.6

Average Value -40.0 -38.5 -27.4
Number of Function Evaluations 2,500 50,000 50,000

5 SUMMARY

SPSA is an efficient gradient-free SA dgorithm that has performed well on avariety of complex
optimization problems. We showed in Section 2 that, as with some standard SA agorithms, adding
injected noise to the basic SPSA adgorithm can result in agloba optimizer. More significantly, in
Section 3, we showed that, under certain conditions, the basic SPSA recursion can achieve globa
convergence without the need for injected noise. The use of basic SPSA asagloba optimizer can
ease the implementation of the globa optimizer (no need to tune the injected noise) and result in a
sgnificantly fagter rate of convergence (no extra noise corrupting the agorithm in the vicinity of the
solution). In the numerica studies, we found significantly better performance of SPSA asaglobd
optimizer than for the popular smulated annealing and genetic agorithm methods, which are often
recommended for globa optimization. In particular, in the case of a 10-dimensiond optimization
parameter (q ), the fast amulated annegling and genetic agorithms generaly failed to find the globa
solution.

APPENDIX (LEMMASRELATED TO THEOREM 2 AND PROOF OF THEOREM 2)

In this Appendix, we designate Kushner (1987) as K87, and Kushner and Yin (1997) asKY97. Here
we are working with the basic SPSA agorithm as defined in equation (4):

Oic+1 =k - 3G (i) -
Wefirgt establish an important preliminary result that is needed in order to gpply the results from K87
and KY 97 in the proof of Theorem 2.

Lemma 1. The ordinary differentia equation (eg. (6) above),
q=9@),
isthe “limit mean ODE” for dgorithm (4).
Proof: Examining the definition of limit mean ODE givenin KY 97, pp. 174 & 138, it isclear that we

need to prove that %é_km::'1[g(q)+ek(qu)+q((cik)]® g@) W.p. lasmn® ¥ . Since Spdl




(1992) has shown that by (q¢) ® 0 w.p. 1, we can conclude using Cesaro summability that the
contribution of the by @@y) termsto thelimitiszerow.p. 1. For the e, () terms, we have by
definition that E[ e, (qx)] = 0; hence, by the law of large numbers, the contribution of the e, qy)
termsto the limit isaso zero. Q.E.D.

Our next Lemmarelatesto Note 2 in Section 3.

L emma 2. Under assumptions J1, J3(a), and J9, the sequence {e.(qx)} isa Ay -martingde difference.
Proof: It issufficient to show that m, © éi"zlek(dk) isa A, -matingde. Assumption J9 satisfies the first
requirement (see K'Y 97, p.68) of the martingae definition, that gjm|<¥ . For themain

requirement, we have for any k:

EMy IM,M,) = Elec st )+ M M, ..M,

= M + Elg1(@ken) MMy

=My + B{[ s @) - BBl [Ge)] M}

=M, +E. E{[8a @)~ E(Geer @) 101)] My Gy}

=M, + EdkﬂE(gkﬂ(q ) | My, Qi) - Eq“m E[E(Qx1 @ksr) | My, Oiar] = My,
where B denotes expectation conditional on qy.; , and al equdities concerning conditiona
expectationsarew.p. 1. Q.E.D.

A key step in the proof of our main result (Theorem 2 below) is establishing the following “large
deviation” result (Lemma 3). Let B, beaset of continuous functionson [0, 7] taking valuesin @ and

withinitid vaue x . Let B2 denotetheinterior of B, , and B, denotethe closure.

Lemma 3. Under assumptions M4, J5, J6, and J10, we have
- inf S(Tf)£liminflogPf{q"(-)T By}
1 8Y n
£ limsuplogPe{q "(-)T By} £- inf S(T), )
n X
where R}’ denotes the probability under the condition that q"(0) =x .

Proof: Thisresult is adapted from Theorem 10.4 in KY 97, p. 181. Note that our assumption JI0isa
modified form of their assumptions (A10.5) and (A10.6), using “equals’ Sgnsrather than
inequdities. The two-sded inequdity in (9) follows from J10 by an argument andogousto the
proof of KY87's Theorem 10.1 (p. 178), which uses an “equality” assumption ((A10.4), p.
174) to arrive a atwo-Sded large deviation result andogousto (9) above.  Q.E.D.

We regtate our main theorem:

Theorem 2: Under hypotheses J1 through J12, q, convergesin probability to the set of globd minima
of L@).

Proof: Thisresult follows from adiscusson in K87. Theorem 2 of K87, (p.177) describes
probabilities involving expected times for the SA dgorithm (system (1.1) of K87) to trangtion



from one k; to another. The SA agorithm he uses can be written in our notation as

Qk+1 =0k - l0@y) +zk] , Where z, isi.i.d. Gaussian (injected) noise. The K87 Theorem 2 uses
thei.i.d. Gaussian assumption only to arrive a alarge deviation result exactly anadogous to our
Lemma 3. The subsequent resultsin K87 are based on this large deviation result. Recal that
the SPSA dgorithm without injected noise can be written in the form g1 =ay - axlg@k) +zk] -
Since we have established Lemma 3 for SPSA, the results of K87 hold for the SPSA agorithm
with its “effective’ noise {z} replacing the {z,} sequence used in K87. In particular, K87's
discusson (pp. 178, 179) of his Theorem 2 is applicable to our Theorem 2 context (SPSA
without injected noise), which corresponds to K87's “potential case.” Note that our
formulation corresponds to the K87 setup where b(x,x) = b(x) in his notation, which, by the
comment in K87, p. 179, meansthat his discusson is gpplicable to his system (1.1) and hence
to our setup. In hisdiscussion on p. 179, K87 indicates that the difference between the
measureof X,, (which correspondsto our g, ) and the invariant measure (which we have

denoted p" ) converges asymptoticaly (n,k® ¥,h ® 0) to the zero measure weakly. This means
that, inthelimitask® ¥ , q, isequivaent to p in the same sense asin Theorem 2 of Gelfand

and Mitter (1991), and the desired convergence in probability follows asin Theorem 1 above.
QED.
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